Product Range TRANSILON Conveyor and Processing Belts

Transilon product design

① Top face

Various coating materials, thicknesses and textures determine grip, chemical, physiological and mechanical properties of the belt.

Transilon for light materials handling ...

In the early 60s the idea of developing conveyor belting for light materials handling began to materialize. Under the trademark Transilon, Siegling created a product line of over 120 types and constructions to meet the needs of the market. Many types are the result of development activities carried out in cooperation with users and original equipment manufacturers. From rugged "jacks-of-all-trades" to high-tech "specialists": the Transilon product line offers a wide range of types for the most varied of conveying tasks in all industries, while at the same time also carrying out processing tasks. Special Siegling literature is available for many of the topics and industries mentioned in this brochure.

The conditions under which conveyor and power transmission belts are used are seldom identical. So when using Transilon, take advantage of the experience and competence of your Siegling consultant.

Newly developed product innovations are being added to the Transilon product range constantly to meet the requirements of the market.

⁽²⁾ Tension member

The use of various special fabrics largely determines the suitability for specific applications. Belt tracking properties, load/ elongation properties, electrostatic properties, flatness, knife-edge and curve suitability are directly dependant on the fabric construction.

3 Underside

The design of the underside determines the noise emission, wear, and suitability for sliding or rolling support of the belt.

Example: For sports and leisure activities Treadmill belts must be resistant to extreme punctual impacts but at the same time track perfectly straight. Transilon passes the fitness test!

Example: In distribution and logistics centres In complex distribution systems with automated sorters, Transilon ensures smooth operation of all conveying tasks.

Transilon for light materials handling	Advantages	Properties	
in all industries	small take up ranges		
for the most varied	sinali take-up ranges	virtually stretchless	
of conveying and processing tasks	small drum diameters possible	longitudinally flexible	
Special processing	maintenana francisca tempionia		
Special features, properties and textures	not required	dimensionally stable	
Types of splices	humane working conditions	low-noise	
Splicing equipment			
Forms of delivery	economical	long product life	
Product Ranges			
	easy to handle	light and thin	

Example:

In the bakery and confectionery industry In addition to suitability for use in the food industry, small and fragile goods require good flatness with very small drum diameters and greater resistance to oils and greases.

2

3

4

7

8

10

11 11

12

... in all industries

Example: In the fishing industry On and offshore, Transilon is used for the conveying of packaged and unpackaged fish. Frequent cleaning with hot water and low operating temperatures are typical conditions for these applications.

Example: In the brick and tile industry Here, Transilon withstands extreme mechanical stress: high tensile forces arising from large surface loads along with heavy, abrasive stress.

... for the most varied of conveying and processing tasks

Horizontal conveying

Even a conveying task which seems quite simple can require a whole host of belt properties.

Siegling has the best belt type for various goods, conveying speeds, reversing systems, stop & go and accumulation conveying, and other operating conditions. Some examples of the diverse features of Transilon include flame-retardance, exceptionally low-noise, resistance to pyrolysis, suitability for the conveying of unpackaged food, and non-antistatic and highly-conductive properties.

Horizontal conveying with troughable belts. The tension member construction provides the flexibility in the desired direction.

Left: Belts for telescopic conveyors – here being used to unload lorries – must be designed to run with counter bending and at the same time, to withstand high punctual loads.

Below: Collecting belt in check-in area of an airport. The good flatness of the belt type here ensures that the goods can be discharged to the side smoothly, even on wide belts. Flame retardance is a "must" in modern airports.

Inclined conveying

Goods can be conveyed at an incline even on smooth belt surfaces. The conveying angle is dependent on a variety of factors such as the type of goods being conveyed, the top face coating and external factors like dust, moisture, etc.

For large conveying angles and for the conveying of small pieces and bulk goods, Siegling offer textured belts or belts equipped with lateral profiles.

Curved conveying

Curved belts from Siegling are suitable for use in conjunction with a diverse array of belt tracking systems and are in use on the conveyors of numerous major manufacturers. Thanks to largelyautomated fabrication, Siegling guarantees strict adherence to the geometrical shapes and dimensions required when supplying finished belts.

Dividing curves into several segments makes for a favourable distribution of force vectors in the belt so even heavy goods can be carried without any problems.

Inclined conveying in the tobacco industry. In this area, conveying angles of up to 22° are possible for belt types with smooth surfaces.

Curved conveyor in a distribution centre.

Processing belts

With Transilon, the gap is often bridged between the classical conveying function from "A" to "B" and an active function in the production process.

For example, in the textile industry Transilon processing belts stack thin layers of web, in large bakeries they form balls of dough, in the wood industry they compress chip mat in the pre-press, in dairies milk is coagulated on the belts to form cheese.

Here are just a few examples of process operations.

Collection and distribution

When pushers and ploughs are used, the belt's laterally stiff design guarantees that it will lie flat and continue to run in a straight line reliably. The lateral loading and discharge of goods is achieved by using very smooth, wear-resistant surfaces.

Lateral sorters (e.g. carrier cells), on the other hand, require very thin, flexible belts whose surfaces have high coefficients of friction.

Their special tension member construction means that they have very low energy consumption.

Lateral sorter in a distribution centre. The high acceleration requires the belt surface to have an extremely high coefficient of friction.

In large bakeries balls of dough are formed as a result of differing belt speeds.

Pre-press belt in the manufacture of particle boards. The particle mat is pre-pressed while being conveyed.

Cross-lapping of web layers in the nonwoven industry. High production speed and acceleration of masses while the web is guided directly between the belts places extremely high demands on the processing belts.

Distribution belt in a distribution centre. The belt's fabric design has to withstand high lateral forces.

Special processing

Numerous combinations of tension member design and coating construction makes are possible.

But certain conveying and processing tasks require more: mechanical, physical or chemical belt properties which can be provided only by special production processes, combinations of materials and/or finishing (see next pages).

Further information about all "special applications" is available on request.

To contain goods on the sides when conveying bulk goods, sidewall profiles are used – often in conjunction with lateral profiles.

Profiles

Conveyor belts with profiles are used for the inclined and declined conveying of bulk goods and small pieces.

Profiles are available in various shapes and sizes and can in some cases be supplied as roll material.

Perforations

It is possible to maintain very narrow tolerances for practically any pattern of perforations in Transilon material. (Transilon with perforations can not be used for form-fit transmission of power.)

Belt edge sealing ProSeal

The penetration of oil, grease and bacteria is prevented to a great extent with a belt edge sealing. The sealing extends the belt life and improves the belt's hygienic properties.

Special features, properties and textures

Textures

Siegling has developed and optimized a wide range of surface textures and patterns for very different applications.

The appropriately optimized surface textures and patterns ensure, for example, ideal grip with demanding goods such as roller suitcases and good release properties with dough and are also used to emboss manufacturer-specific patterns on the underside of chocolate.

Transilon textured belts can run at incline angles of up to 30° without profiles.

For larger incline angles they can also be fitted with profiles and sidewalls (see previous pages).

- ① AR Rough top surface (M 1:1)
 ② GSTR Coarse textured surface (M 1:1)
 ③ STR Normal textured surface (M 1:1)
 ④ LG Longitudinal groove (M 1:1)
 ⑤ RFF Fine rhomboid texture (M 1:1)
- 6 **NP** Inverted pyramid pattern (M 1:1)
 - ⑦ SG Lattice pattern (M 1:1)

Electrical properties

In numerous conveying and processing functions, the electrical properties of the belt material are important for smooth operation. As a standard, Transilon belts are equipped with a conductive tension member which prevents electrostatic build-up of the belt and therefore the goods being conveyed.

Transilon NA belts (NA = non-antistatic) are not electrically conductive. They facilitate special engineering solutions for production conveyors on which goods are positioned, synchronized or otherwise regulated in their flow by electromagnetic means, e.g. on security screening and in the quality control.

With their highly-conductive surface coatings and/or tension members, Transilon highly-conductive belts (HC) prevent electrostatic build-up. For the safe conveying of electrical components and other electronically sensitive goods.

FDA/USDA/HACCP

Thanks to numerous product innovations, Siegling contribute significantly to the hygienic conditions in the sensitive production areas of the food industry.

Transilon food belts conform to FDA and/or USDA regulations and assist you in realizing your concept for hygiene.

Information about special solutions for the hygienic flow of materials available on request.

Further special products

In addition to these textures and features of Transilon conveyor and processing belts, Siegling offer numerous special developments for various applications including:

- belts resistant to UV
- belts with silicone coatings
- flame-retardant belts
- belts for hot goods
- silent belts
- wear-resistant belts
- knife-edge belts
- troughable belts

- ① **RF** Fine rhomboid texture (M 1:1)
- ② VN Staggered stud (M 1:2)
- ③ KN Cross-stud pattern (M 1:1)
 ④ R80 Rhomboid pattern (M 1:2)
- (5) CH Check-in pattern (M 1:4)

Types of splices

① Z-splice ② Stepped Z-splice ③ Wedge splice ④ Stepped-overlap splice

The splicing method appropriate for individual applications is dependent on the belt types used and the prevailing operating conditions.

In addition to splice reliability, flexibility of the splice and the effort required for fabrication are decisive criteria for the selection of the splicing method.

Detailed instructions for all splicing procedures are available on request.

Hot-pressing

A hot-pressed splice provides the highest durability and flexibility. Following types are available:

Z-splice

Meets the most rigorous of requirements for uniformity of thickness. Very flexible splice, required particularly for knife-edge belts. Standard splice for 1 and 2-ply belt types.

♦ Stepped Z-splice

Properties comparable to those of the Z-splice. Also suitable for rugged operating conditions (e.g. soiled drums). Possible for various 2 and 3-ply belt types.

Wedge splice

Splice type for solid-woven fabric and NOVO types.

Stepped overlap splice

Especially for 2 and 3-ply belt types with duroplastic coatings.

Cold-pressing

It is possible to cold-press wedge or stepped overlap splices in independent fitting repair jobs on site. Please note that such splices have limited strength and flexibility.

⁽⁵⁾ Wire hook fastener⁽⁶⁾ Clamp fastener⁽⁷⁾ Plastic fastener

Mechanical fasteners

Mechanical fasteners make it possible to

- quickly fit and remove the belt without disassembling machine components,
- repair a belt at short notice by inserting a piece of belt material,
- make belts endless quickly and easily (please inquire about lacers).

Following fasteners are available:

- wire hook fasteners (HS)
- clamp fasteners (CS)
- plastic fasteners (KS), also available optionally imbedded or heated into the belt coating.

Splicing Equipment

For reliable hot-pressing (splicing) of Transilon conveyor and processing belts, a diverse, tried-and-tested range of equipment is available.

The equipment required for splicing depends mainly on the type of splice. Other important factors include the conditions under which the splice is to be fabricated (workshop or on-site fitting) and the width of the belts to be spliced.

The equipment depicted here is just a sample of our splicing equipment range. On request we will send you our complete equipment overview containing all important technical data for the equipment.

LSM S1 (Layer peeling machine) THP 6/15 (Heating press)

Forms of delivery

- endless belts
- belts prepared for hot or cold-pressing on site
- roll material for independent belt fabrication
- belts with mechanical fasteners
- belts with sealed edges (ProSeal)
- belts with profiles welded on (longitudinal, lateral, diagonal, half-round)
- belts with sidewalls
- belts with perforations
- special designs with metal eyelets, impulse foils, special markings, etc.

Pro	duct	range				_				
		Ū	Technical data, properties and recommendations, possible applications	Article number	Total thickness, approx. [mm]	Weight, approx. [kg/m²]	SD value, approx. [N/mm width]	d _{min} approx. [mm]*	Permissible operating temperature [°C]	
Е	2/1	A2/A2 NA-TT ¹⁾	blue	900360	0.8	0.7	2	-	-10°/+60°	
Е	2/1	U0/U2	white	900176	0.6	0.6	2	r 3-8	-30°/+100°	
Е	2/1	U0/U2	amber	906455	0.7	0.7	2	r 3-8	-30°/+90°	
E	2/2	U0/0	transp.	900102	1.2	1.1	2	r 3-8	-30°/+100°	
E	$\frac{3}{1}$		transp.	900339	0.9	0.6	3	25*	-30°/+100°	
F	3/1	10/53	white	900340	1.1	1.5	3	r 3-8	-30°/+100°	
E	3/1	U0/U0	transp.	906430	0.9	0.7	3	r 3-8	-30°/+100°	
Е	3/1	U0/U2	white	900006	1.1	1.1	3	r 3-8	-30°/+100°	
Е	3/1	U0/U2 MT-C	white	900008	0.7	0.7	3	r 3-8	-30°/+100°	
E	3/1	U0/U2 MT-NA	white	900201	0.8	0.9	3	r 3-8	-30°/+100°	
E	$\frac{3}{1}$		brown	900007	1.2	1.1	3	r 3-8	$-30^{\circ}/+100^{\circ}$	
F	3/2		transp	900231	1.2	1.2	3	r 3-8	-30°/+100°	
E	3/2	U0/U2	white	900103	1.2	1.4	3	r 3-8	-30°/+100°	
Е	3/2	U0/U/C Fine	white	999638	1.3	1.2	3	r 3-8	-10°/+100°	
Е	4/1	P2/P2 MT/MT-HC	black	906189	0.6	0.7	4	60	-30°/+100°	
E	4/1	U0/V5H MT	green	900171	1.1	1.2	4	30	-10°/+70°	
E	4/1	V4H/V4H MI/SIR	green	906226	1.4	1.6	4	30	$-10^{\circ}/+/0^{\circ}$	
F	4/2	50/50 S0/S3 FSTR	white	900135	1.5	1.2	4	40	-40°/+180°	
E	4/2	U0/P2 MT-HC	black	906212	0.9	0.8	4	60	-30°/+100°	
Е	4/2	U0/U0	transp.	900206	1.0	1.0	4	r 3-8	-30°/+100°	
Е	4/2	U0/U2 MT	white	900207	1.3	1.2	4	r 3-8	-30°/+100°	
E	4/2	U0/U2-LF	white	906373	1.3	1.4	4	r 3-8	-30°/+100°	
E	4/2 5/2	01/02H-HC	black	906389	1.4	1.55	4	40 25 ²⁾	$-10^{\circ}/+100^{\circ}$	
F	5/2	0/V5	green	900104	1.4	2.1	5	25	-10°/+70°	
E	5/2	0/V5H MT	black	906176	1.9	2.15	5	40	-10°/+70°	
Е	6/1	U0/UH	green	900019	0.7	0.6	6	25	-30°/+100°	
Е	6/2	U0/U2-M	green	906191	1.9	2.1	6	50	-30°/+100°	
E	8/2	E0/E10 VN-TT	transp.	900343	3.7	3.0	8	60	-30°/+100°	
E	8/H		blue	906473	1.4	1.4	8	r 3-8	$-30^{\circ}/+100^{\circ}$	
F	о/п 8/2		green	900451	1.4	1.4	0 8	25	$-30^{\circ}/+100^{\circ}$	
E	8/2	U0/U2-LF	green	906450	1.4	1.6	8	25	-30°/+100°	
Е	8/2	U0/U4 GSTR	green	900152	2.1	2.1	8	60	-30°/+100°	
Е	8/H	U0/U6 NP	black	906383	1.8	1.6	8	30	-30°/+100°	
E	8/2	U0/U8	transp.	900024	2.0	2.3	8	60	-30°/+100°	
E	8/2	U0/U10 LG	green	999887	2.1	2.2	8	25	$-30^{\circ}/+100^{\circ}$	
F	8/2	U0/V/U2H MT	green	900170	1.5	1.7	8	60 ²⁾	-10°/+70°	
E	8/2	U0/V/U2H MT-SE	black	906401	1.6	1.8	8	60	-10°/+70°	
Е	8/2	U0/V2H MT	green	900208	1.5	1.6	8	40	-10°/+70°	
E	8/2	U0/V5	green	900025	2.1	2.4	8	40	-10°/+70°	
E	8/2		black	996141	2.1	2.4	8	50	$-10^{\circ}/+/0^{\circ}$	
F	8/2	U0/V5H MT-SF	black	999967	2.1	2.4	8	60	-10°/+70°	
E	8/H	U0/V5 MT-HACCP	blue	906474	1.6	1.7	8	20	-10°/+70°	
Е	8/H	U0/V5 MT-HACCP	white	906452	1.6	1.7	8	20	-10°/+70°	
E	8/2	U0/V5 MT	white	900028	2.1	2.4	8	40	-10°/+70°	
E	8/2	U0/V5 NP	white	900029	2.1	2.4	8	40	-10°/+70°	
E	8/2 8/H		green	900027	2.4	2.65	8	40	$-10^{\circ}/+70^{\circ}$	
F	8/2	U0/V7 SG	black	906286	2.3	2.5	8	40	-10°/+70°	
E	8/H	U0/V10 LG	black	906446	2.25	2.1	8	40	-10°/+70°	
Е	8/2	U0/V10 SG	green	900086	2.6	2.8	8	60	-10°/+70°	
E	8/2	U0/V15 LG	green	900199	3.1	3.6	8	60	-10°/+70°	
E	8/2	U0/V15 LG	black	900275	3.1	3.3	8	60	$-10^{\circ}/+70^{\circ}$	
E	8/2 8/2	UU/VI5LG-SE	DIACK	900037	3.1 4 7	3.5	ð Q	60 60 ²⁾	-10°/+/0°	
E	8/2	U0/V20 AR	black	900087	4.7	4.0	8	60 ²⁾	-10°/+70°	
E	8/2	U0/V20 AR-SE	black	999532	4.8	4.15	8	60	-10°/+70°	
Е	8/2	U0/V20 KN	green	900139	3.6	3.0	8	60	-10°/+70°	
E	8/2	U0/V80 CH-SE	black	906277	8.2	4.4	8	120 ²⁾	-10°/+70°	
E	8/2		blue	996060	2.0	2.4	8	50	$-10^{\circ}/+/0^{\circ}$	
E	8/2	V5/V5 STR/GI	green	900030	2.1	3.15	8	40 60 ²⁾	-10°/+70°	
	212	2, 12 0 m, 0E	5,001	,,	2.0	5.25	Ŭ	~~		

¹⁾ For special applications only (belt wrapper). Not to be used as a conveyor belt. ²⁾ Lower values for special applications possible. Please inquire.

Stiff laterally	Troughable	Low noise (silent)	Suitable for curves	Suitable for knife-edges	Antistatic	Highly-conductive (HC)	Conforms to FDA regulations	Textured surface	
•	•			•					
•	•		•				• • • • • •	•	
				•		•	• • • •	•	
•	• • •	•	•	•			•	•	
		•					•	:	
		•					•	:	
		•							
		•							

TRANSILON

For every type listed a data sheet with all relevant technical information is available on request.

* Minimum drum diameter was determined at room temperature. Lower temperatures require larger drum diameters.

Belts with profiles or sidewalls may require larger drum diameters. Please see brochure ref. no. 600, Profiles and Sidewalls.

** on request

Newly developed product innovations are being added to the Transilon product range constantly to meet the requirements of the market.

The adjacent table was correct at the time of going to press. Please visit **www.siegling.com** to check the latest data and application examples.

Continued on next page

Product range				2				
	Suc			m/s		u u	ing	
	atic			ž	×	<u>_</u>	erat]	
	atio atio	er]]	,0X.	pro [r	Ē	ope [°C	
	s al nda app	dm	kne mm	ıdd	ap	ox.	ole - ure	
	tie tie le	nu	hic ، آر	t. a	ne.	opr	ssib rati	
	om	icle	al t oro;	igh	mn	a L	imis 1pe	
	Tec pro po:	Art	apı	We	SD N/SD	q	Per ten	
E 9/2 A0/A5 TT	transp.	900345	2.9	2.5	9	90	-10°/+60°	
E = 9/2 AU/A15 VN-II E $0/2$ AE/AE ND/CL TT	transp.	900344	4.9	3.4	9	90	$-10^{\circ}/+60^{\circ}$	
E 9/2 A3/A3 NF/GE-TT F 10/M 111/113-NA	green	900064	3.4	2.9	10	90 60	-10 /+80°	
E 10/M U1/U3 GSTR-NA	green	900065	3.5	3.4	10	60	-10°/+80°	
E 10/M V1/V10	green	900066	2.8	3.3	10	60	-10°/+70°	
E 10/M V1/V10 MT	white	900092	2.8	3.3	10	60	-10°/+70°	
E 10/M V1/V20 AR E 10/1 U1/720 0	Dlack	900069	5.0	4.6	10	60	$-10^{\circ}/+/0^{\circ}$	
F 12/2 A0/A3 MT-TT	green	900347	1.8	1.7	10	40 60	-10°/+80°	
E 12/2 EO/E3 MT-TT	transp.	900348	1.7	1.8	12	50	-30°/+100°	
E 12/2 E3/E3 STR/MT-TT	transp.	900349	2.2	2.4	12	50	-30°/+100°	
E 12/2 U0/G10 GSTR-C	black	906448	2.6	2.5	12	60 ²⁾	-20°/+100°	
E 12/2 U0/G20 AR	black	906447	5.3	3.5	12	60	$-20^{\circ}/+100^{\circ}$	
E 12/2 00/00 E 12/2 10/11H	green	900040	1.4 1.4	1.5	12	60 ²⁾	$-30^{\circ}/+100^{\circ}$	
E 12/2 U0/U4 MT	black	906358	2.1	2.3	12	60	-30°/+100°	
E 12/2 U0/U20 GSTR	green	900168	3.8	3.7	12	90	-10°/+80°	
E 12/2 U0/V/U0	transp.	900164	1.5	1.5	12	60	-10°/+70°	
E 12/2 U0/V/U0-SE	black	999903	2.0	2.3	12	90	-10°/+70°	
$E \frac{12}{2} \frac{10}{10} 1$	green	900173	2.1	2.4	12	1002	$-10^{\circ}/+/0^{\circ}$	
F 12/2 U0/V/04 GSTR-C	green	900044	2.5	2.2	12	60	-10°/+70°	
E 12/2 U0/V3 MT-C	black	900264	2.3	2.65	12	60	-10°/+70°	
E 12/2 U0/V5 STR-C-SE	black	999856	2.5	3	12	60	-10°/+70°	
E 12/2 U0/V7	green	900045	2.7	3.1	12	60	-10°/+70°	
E 12/2 U0/V10 STR-SE	black	900323	3.0	3.6	12	90	$-10^{\circ}/+/0^{\circ}$	
F 12/2 U0/V20 MT-NA	white	900202	3.7	4.1	12	60	-10°/+70°	
E 12/2 V5/V10 STR/GL	green	900053	3.2	3.7	12	60	-10°/+70°	
E 15/M V1/V10H MT	green	900324	5.0	5.4	15	140	-10°/+70°	
E 18/3 E0/E3 MT-TT	transp.	900350	2.6	2.8	18	60	-30°/+100°	
E 18/H U0/U2 MT	white	906420	1.6	1.6	18	20	-30°/+100°	
E 18/3 U0/V/02HMI E 18/3 U0/V/0	green	900174	2.8	5.1	18	120	-10°/+70°	
E 20/M U1/U3-NA	green	900074	5.4	5.1	20	160	-10°/+80°	
E 20/M U1/U3 GSTR-NA	green	900075	5.7	5.5	20	160	-10°/+80°	
E 30/3 U0/V20	green	906352	5.8	7.2	30	250 ²⁾	-10°/+70°	
E 30/3 U0/V25 GSTR	green	906387	6.2	7.4	30	250 ²⁾	$-10^{\circ}/+70^{\circ}$	
NOVO 25-NA	white	900205	7.5	0.5	10	40	$-10^{\circ}/+30^{\circ}$	
NOVO 25-HC	black	900195	2.5	1.5	10	40	-10°/+120°	
NOVO 40-HC	black	900221	4.0	2.7	10	70	-10°/+120°	
NOVO 60-HC	black	900286	5.5	3.7	10	120 ²⁾	-10°/+120°	
P 3/1-NA	black	900263	0.33	0.39	3	30	$-40^{\circ}/+80^{\circ}$	
TT 5/1-6431-HC	black	906431	1.2	1.2	5	30	-20°/+80°	
TT 10/1 6378-HC	black	906378	1.8	1.9	10	90	-20°/+80°	
TT 14/2-6432-HC	black	906432	2.3	2.3	14	120	-20°/+80°	
	<i>.</i>							

¹⁾ For special applications only (belt wrapper). Not to be used as a conveyor belt. ²⁾ Lower values for special applications possible. Please inquire.

Stiff laterally	Troughable	Low noise (silent)	Suitable for curves	Suitable for knife-edges	Antistatic	Highly-conductive (HC)	Conforms to FDA regulations	Textured surface
		•	•		•		•	•
:	** ** **		•				•	•
							•	•
	•	•	•				•	•
	• • • **		•				•	•
•		•	•		•	•	O**	•
					•	•	•	

IRANSILON

For every type listed a data sheet with all relevant technical information is available on request.

* Minimum drum diameter was determined at room temperature. Lower temperatures require larger drum diameters.

Belts with profiles or sidewalls may require larger drum diameters. Please see brochure ref. no. 600. Profiles and Sidewalls.

** on request

Newly developed product innovations are being added to the Transilon product range constantly to meet the requirements of the market.

The adjacent table was correct at the time of going to press. Please visit **www.siegling.com** to check the latest data and application examples.

					Fabric material
					SD value*
					Number of plies or solid-woven material
					Underside coating**
					Top face coating**
Ε	8	/ 2	U0 /	/ V5	
Ε	10	/ M	V 1 ,	/V10	In some cases. Transilon type designations contain additional information which describe certain surface designs or belt

Code and abbreviations

Tension member construction

polyester	E
aramide	А
polyamide	Р
special fabric	EC
Design	

1.2.3
Н
М

Coatings	
PVC	V
hard PVC	VH
urethane	U
hard urethane	UH
polyolefin	A
polyester	E
rubber	G
silicone	S
polyamide	Р
special coatings	F. Z. L. NOVO. C
uncoated	0
impregnated	U0. E0. A0 S0. Y0

* The SD value indicates the dynamic load/elongation properties in long-term use at 1% elongation. measured in N/mm belt width.

AR	rough-top surface
FG	herringbone pattern
FSTR	fine textured surface
GL	smooth surface
GSTR	coarse textured surface
KN	cross-stud pattern
LG	longitudinal groove
MT	matt surface
NP	inverted pyramid texture
R	rhomboid texture
RF	rhomboid fine texture
RFF	rhomboid fine texture
SG	lattice texture
STR	normal textured surface
VN	staggered stud

Belt properties

properties (see below).

Top face textures

С	laterally flexible,
	suitable for curved conveyors
HC	highly-conductive
HW	hot water
LF	low friction
М	particularly stiff laterally
NA	non-antistatic
S	low noise (silent)
SE	flame-retardant
Q	laterally flexible tension member

** This figure represents the coating thickness in 1/10 mm. e.g. V5 = 0.5 mm PVC.

Τ

	Product brochures (selected)*
RefNo.	Subject
217	Image brochure
221	Marble industry
228	Tobacco industry
242	Airport
262	Timber and particle board industry
269	Food industry
295	Nonwoven and clothing industry
213/3	Calculation methods
213/4	Recommendations for conveyor design
317	Transilon Technical Information 1 Storage · Finishing · Fitting
318	Transilon Technical Information 2 Special Features and Properties
229	Round belts
231	Belts for live roller conveying
232	Belts for drag band conveyor
267	Wear-resistant belts
223	ProLink plastic modular belting Product range
245	ProPosition High-efficiency timing belts Product range
	*Product literature for other product groups (e.g. high-efficiency flat belts) available on request

TRANSILON

Conveyor and Processing Belts

Further Siegling products:

- · ProLink plastic modular belting
- ProPosition high-efficiency timing belts
- Transilon
 Round belts
- Extremultus High-efficiency flat belts
- Extremultus High-efficiency tangential belts, spindle tapes
- Extremultus Folder and carrier belts, layboy tapes

Committed staff, quality-orientated organisation and production processes ensure the constantly high standards of our products and services. The Siegling Quality Management System is certified in accordance with DIN EN ISO 9001.

In addition to product quality, environmental protection is an important corporate goal. Early on we also introduced an environmental management system, certified in accordance with ISO 14001. ① ② An important step in quality assurance:

testing of material in the Siegling lab.

③ ④ State-of-the-art technology in all production facilities This paper was made from non-chlorine-bleached cellulose.

Reproduction of text or parts thereof only with our approval. Modifications reserved.

> egistered trademarks egling tremultus ansilon

Stephens Miraclo Extremultus Ltd. Unit 4, Fifth Avenue, Tameside Park Dukinfield, Cheshire SK16 4PP Tel. 0161-330 65 21 · Fax 0161-308 43 85

Worldwide Siegling Service

The worldwide Siegling Group has more than 1700 employees. Siegling production facilities are located in 8 countries. Siegling have companies and agencies offering ample stock and their own workshops in more than 50 countries. Siegling service centres provide qualified assistance at more than 300 locations throughout the world.

A member of the Forbo Group.

Unit 2, Pilton Industrial Estate Pitlake, Croydon, Surrey CRO 3RY Tel. 0208-681 81 51 · Fax 0208-686 62 88

