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Abstract
Let Alice, Bob and Charlie initially share an arbitrary fermionic three-qubit
pure state, whose three-tangle is τ

(0)

3 . It is shown within the single-mode
approximation that if one party among the three of them moves with a uniform
acceleration with respect to the other parties, the three-tangle reduces to
τ

(0)

3 cos2 r, where r denotes a statistical factor in Fermi–Dirac statistics.

PACS numbers: 03.67.−a, 03.65.Ud, 03.30.+p

(Some figures may appear in colour only in the online journal)

Recently, quantum information theories in the relativistic framework have attracted
considerable attention [1–5]. It seems to be mainly due to the fact that many modern
experiments on quantum information processing involve the use of photons and/or electrons,
where the relativistic effect is not negligible. Furthermore, relativistic quantum information
is also important from purely theoretical aspects [6] in the context of black hole physics and
quantum gravity.

It has been shown in [3] that the entanglement formed initially in an inertial frame is
generally degraded in a non-inertial frame. In particular, the bipartite bosonic entanglement
completely vanishes when one of the two parties approaches the Rindler horizon. However, for
the tripartite case there is a remnant of the bosonic entanglement even in the Rindler horizon.

In this paper, we will examine the degradation of the pure-state three-tangle in the non-
inertial frame. We assume that the three stationary parties Alice, Bob and Charlie share the
arbitrary fermionic pure three-qubit state |ψ〉 at the event P (see figure 1). One party then
undergoes constant acceleration, while the remaining two parties remain at the rest frame. The
worldlines for accelerating and stationary frames are described in figure 1 by red and blue
solid lines, respectively.

As figure 1 shows, the accelerating party cannot access the Rindler region II. This means
that the accelerating party cannot communicate with any observer in this region. Thus, in order
to describe physics from the point of view of the accelerating observer, we need to remove the
part of the system described by the region II due to its causally disconnected nature. This can
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Figure 1. We assume that the three parties, who are at rest frame at t < 0, share an arbitrary
fermionic three-qubit pure state |ψ〉 at the event P. One party then undergoes a constant acceleration
(red solid line), while the remaining two parties remain at the rest frame (blue solid line). I and II
denote the two causally disconnected regions of Rindler space.

be achieved by taking a partial trace over this region, and, as a result, the information of the
region II is erased. The degradation of the bipartite entanglement [3] occurs via this partial
trace.

One may argue that the partial trace over the region II in the state of the accelerating party
is not a physically reasonable process because the observers in the rest frame can communicate
with an observer in the region II. This is true because the observer in the region II can send a
signal to the observers in the rest frame when t > τ . In spite of this fact, the partial trace over II
for the accelerating party is a physical process due to the fact that the quantum entanglement is
not a local property of the quantum state. Let us imagine that Alice, Bob and Charlie have their
own particle detectors. Then, the entanglement of the quantum state can be measured through
communication between rest and accelerating parties4. Thus, the accelerating party sends his
(or her) data to the observers in the rest frame and then one of the observers in the rest frame
can measure the quantity of the quantum entanglement by combining all data obtained from
all particle detectors. In the data received from the accelerating party, the effect of the partial
trace over the region II is already involved due to the causally disconnected nature with the
region II. Thus, the partial trace over the region II is also a physically realizable process from
the aspects of the rest frame in the measurement of the quantum entanglement.

The main result of this paper is that from the perspective of the accelerating parties the
degradation factor of the three-tangle is independent of the initial state |ψ〉, but depends only
on the statistical factor. We show this in the following by making use of the single-mode
approximation.

The fermionic entanglement can be addressed more easily than its bosonic counterpart
due to the Pauli exclusion principle. The Unruh decoherence beyond the single-mode
approximation is fully discussed in [4]. Let |n�〉R be a n-particle state with an energy E�

in the spacetime R. Then, for the fermion case, the Unruh effect is described by

|0�〉U = |0�〉R ⊗ |0�〉L

|1�〉+U = qR|1�〉R ⊗ |0�〉L + qL|0�〉R ⊗ |1�〉L, (1)

4 This is one-way communication at t > τ because the observers in the rest frame are in the future wedge with
respect to the accelerating party. Thus, while the observer in the accelerating frame can send a signal to the observers
in the rest frame, the reverse communication is impossible.
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where |qR|2 + |qL|2 = 1 and

|0�〉R = cos r�|0�〉+I |0�〉−II + sin r�|1�〉+I |1�〉−II

|0�〉L = cos r�|0�〉−I |0�〉+II − sin r�|1�〉−I |1�〉+II

|1�〉R = |1�〉+I |0�〉−II

|1�〉L = |0�〉−I |1�〉+II . (2)

Here, |n〉U is a n-particle state in Unruh mode and the ± indicates particle and antiparticle.
The parameter r� is a constant related to the Fermi–Dirac statistics. Since the Bogoliubov
coefficients β jk between the Unruh and Monkowski modes are zero, both modes share the
common vacuum. However, in this paper we will not adopt equation (1), but the simpler single-
mode approximation because of the following reasons. Most important reason is the fact that
equation (1) makes the dimension of the Hilbert space for the accelerating party to be larger
than the corresponding number for the stationary parties due to particle and antiparticle modes.
Since, so far, we know how to compute the three-tangle for only a few low-rank qubit systems
[7], the increase of the dimension generates a crucial difficulty for the analytical treatment of
the three-tangle. However, the single-mode approximation does not generate these difficulties.
The second reason is that as far as we know, the treatment of the three-tangle on the analytical
ground in the non-inertial perspective is not discussed in the other literature yet. Thus, it is
important to gain an insight into this issue. We think we can get a sufficient insight even
though the single-mode approximation is adopted. Another reason is that the entanglement
degradation with the single-mode approximation is exactly the same with the degradation,
with qR = 1 case [4]. Thus, we can understand, at least, the degradation of the three-tangle in
the non-inertial frame for the special choice of Unruh mode.

By computing the Bogoliubov coefficients [5, 8] explicitly in the fermionic system, one
can show that within the single-mode approximation, the vacuum state |0〉U and the one-
particle state |1〉U , where the subscript U stands for Unruh mode, in a uniformly accelerated
frame with acceleration a are transformed into

|0〉U → cos r|0〉I|0〉II + sin r|1〉I|1〉II

|1〉U → |1〉I|0〉II, (3)

where the parameter r is defined by

cos r = 1√
1 + exp(−2πωc/a)

, (4)

and c denotes the speed of light, and ω represents the central frequency of the fermion
wave packet. It is to be noted that the sign in the denominator of equation (4) is originated
from Fermi–Dirac statistics. In equation (3), |n〉I and |n〉II (n = 0, 1) indicate the mode
decomposition in two causally disconnected regions in the Rindler space.

In this paper we will examine the three-tangle [9], one of the most important tripartite
entanglement measures, in a non-inertial frame. For this purpose, we assume that Alice, Bob
and Charlie initially share an arbitrary pure three-qubit state |ψ〉ABC. Applying a Schmidt
decomposition we can transform |ψ〉ABC into the following [10]:

|ψ〉ABC = λ0|000〉 + λ1eiϕ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (5)

where λi � 0 (i = 0, . . . , 4),
∑

i λ
2
i = 1 and 0 � ϕ � π . The three-tangle of |ψ〉ABC is

τ
(0)

3 = 4λ2
0λ

2
4. We will show in our study that if one party moves with a uniform acceleration

a with respect to the other parties, the resulting three-tangle is degraded to

τ3 = τ
(0)

3 cos2 r, (6)
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regardless of which of the parties is accelerating. Therefore, at the Rindler horizon, the three-
tangle reduces to half of the initial three-tangle.

Now, we assume that Alice, Bob and Charlie were initially in the spacetime region I.
If Alice was chosen as the accelerating party, the Unruh effect (3) transforms |ψ〉ABC into a
four-qubit state |ψA〉IBC⊗II , whose explicit expression is

|ψA〉IBC⊗II = [λ0 cos r|000〉 + λ1eiϕ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉] ⊗ |0〉II (7)

+λ0 sin r|100〉IBC ⊗ |1〉II .

Since the accelerating party cannot access the region II due to the causally disconnected
condition, it is reasonable to take a partial trace over II to average out the effect of qubit |n〉II

in equation (7). As a result, the initial state |ψ〉ABC reduces to a mixed state ρIBC = trII|ψA〉〈ψA|.
This means that some information formed initially in the region I is leaked into the region II.
Thus, Alice’s acceleration induces an information loss, which is a main consequence of the
Unruh effect.

One can show that the final state ρIBC is a rank-2 tensor in a form

ρIBC = p|a+〉〈a+| + (1 − p)|a−〉〈a−|, (8)

where p = (1 + √
�)/2 with

� = (
1 − 2λ2

0 sin2 r
)2 + 4λ2

0λ
2
1 sin2 r. (9)

In equation (8), the vectors |a±〉 are given by

|a±〉 = 1

N±
[λ0 cos rz±|000〉 + y±|100〉 + λ2z±|101〉 + λ3z±|110〉 + λ4z±|111〉], (10)

where

z± = 1 − 2λ2
0 sin2 r ±

√
�

y± = eiϕλ1(1 ±
√

�)

N 2
± = (

1 − λ2
0 sin2 r − λ2

1

)
z2
± + |y±|2. (11)

It is easy to show 〈a+|a−〉 = 0, which guarantees that ρIBC is a quantum state.
Since the three-tangle for mixed states is defined via a convex roof method [11], we should

find an optimal decomposition of ρIBC for analytical computation of the three-tangle. It is to
be noted that the three-tangles for |a±〉 are

τ3(|a±〉) = 4λ2
0λ

2
4 cos2 r

(
z±
N±

)4

. (12)

Now, we define

|F, θ〉 = √
p|a+〉 + eiθ

√
1 − p|a−〉. (13)

Then, it is easy to show that ρIBC can be represented as

ρIBC = 1
2 |F, θ〉〈F, θ | + 1

2 |F, θ + π〉〈F, θ + π | (14)

and the three-tangle of |F, θ〉 is

τ3(|F, θ〉) = 4λ2
0λ

2
4 cos2 r

[
pz2

+
N 2+

+ (1 − p)z2
−

N 2−
+ 2

√
p(1 − p)z+z−
N+N−

cos θ

]2

. (15)

Now, we assume that equation (14) is an optimal decomposition for the three-tangle for the
time being. Then, the three-tangle of ρIBC is

τ3(ρIBC) = 4λ2
0λ

2
4 cos2 r

[(
pz2

+
N 2+

+ (1 − p)z2
−

N 2−

)2

+ 4p(1 − p)z2
+z2

−
N 2+N 2−

cos2 θ

]
. (16)
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Therefore, the convex roof constraint of the three-tangle leads to θ being fixed as θ = π/2.
Consequently, equation (16) indicates that τ3(ρIBC) is really a convex function with respect to
p. Therefore, equation (14) is really an optimal decomposition of ρIBC if θ = π/2. By inserting
equations (9) and (11) into equation (16) and imposing θ = π/2, it is straightforward to show
that

τ3(ρIBC) = 4λ2
0λ

2
4 cos2 r. (17)

Thus, equation (6) holds when Alice is chosen as the accelerating party.
Now, we choose Bob as the accelerating party. Following a procedure similar to the one

described above, one can show that ρAIC becomes

ρAIC = p|b+〉〈b+| + (1 − p)|b−〉〈b−|, (18)

where p = (1 + √
σ )/2 with

σ = [
1 − 2

(
λ2

0 + λ2
1 + λ2

2

)
sin2 r

]2 + 4 sin2 r
(
λ2

1λ
2
3 + λ2

2λ
2
4 + 2λ1λ2λ3λ4 cos ϕ

)
. (19)

In equation (18), the vectors |b±〉 are given by

|b±〉 = 1

N±

[
a±

000|000〉 + a010|010〉 + a±
100|100〉 + a±

101|101〉 + a±
110|110〉 + a±

111|111〉], (20)

where

a±
000 = λ0 cos r

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) ± √
σ
]

a010 = 2λ0 sin2 r[e−iϕλ1λ3 + λ2λ4]

a±
100 = eiϕλ1 cos r

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) ± √
σ
]

a±
101 = λ2 cos r

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) ± √
σ
]

a±
110 = λ3

[
1 − 2 sin2 r

(
λ2

0 + λ2
2

) ± √
σ
] + 2eiϕλ1λ2λ4 sin2 r

a±
111 = λ4

[
1 − 2 sin2 r

(
λ2

0 + λ2
1

) ± √
σ
] + 2e−iϕλ1λ2λ3 sin2 r (21)

and N 2
± = ∣∣a±

000

∣∣2 + ∣∣a010

∣∣2 + ∣∣a±
100

∣∣2 + ∣∣a±
101

∣∣2 + ∣∣a±
110

∣∣2 + ∣∣a±
111

∣∣2
. It is easy to show that the

three-tangles of |b±〉 are

τ3(|b±〉) = 4λ2
0λ

2
4 cos2 r

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) ± √
σ

N±

]4

. (22)

In order to compute the three-tangle of ρAIC, we define

|G, θ〉 = √
p|b+〉 + eiθ

√
1 − p|b−〉. (23)

Then, ρAIC can be represented as

ρAIC = 1
2 |G, θ〉〈G, θ | + 1

2 |G, θ + π〉〈G, θ + π |, (24)

and the three-tangle of |G, θ〉 is

τ3(|G, θ〉) = 4λ2
0λ

2
4 cos2 r[(X − Y )2 + Z2 + 4XY cos2 θ − 2Z(X + Y ) cos θ ], (25)

where

X = p

N 2+

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) + √
σ
]2

Y = 1 − p

N 2−

[
1 − 2 sin2 r

(
λ2

0 + λ2
1 + λ2

2

) − √
σ
]2

Z = 8 sin2 r

√
p(1 − p)

N+N−

[
λ2

1λ
2
3 + λ2

2λ
2
4 + 2λ1λ2λ3λ4 cos ϕ

]
. (26)
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Therefore, if equation (24) is the optimal decomposition, the three-tangle of ρAIC is

τ3(ρAIC) = 4λ2
0λ

2
4 cos2 r[(X − Y )2 + Z2 + 4XY cos2 θ ]. (27)

Since the three-tangle is defined as a convex roof method, we should choose θ = π/2, which
gives

τ3(ρAIC) = 4λ2
0λ

2
4 cos2 r[(X − Y )2 + Z2]. (28)

It is easy to show that equation (28) is really a convex function with respect to p. Using
equations (19), (21) and (26) and performing a series of calculations, we can show that
(X − Y )2 + Z2 = 1, which results in

τ3(ρAIC) = 4λ2
0λ

2
4 cos2 r. (29)

Thus, equation (6) holds when Bob is chosen as the accelerating party.
Finally, let us choose Charlie as the accelerating party. Since |ψ〉ABC given in equation (5)

has Bob ↔ Charlie and λ2 ↔ λ3 symmetry, the previous calculation implies

τ3(ρABI ) = 4λ2
0λ

2
4 cos2 r. (30)

Thus, equation (6) holds regardless of the choice of the accelerating party.
So far, we have shown that the canonical form of the three-qubit state (5) obeys

equation (6) in the non-inertial frame. However, this does not mean that the arbitrary three-
qubit pure state |ψ3〉 = ∑1

i, j,k=0 ai jk|i jk〉 obeys equation (6). The question arises as to whether
the Unruh transformation (3) that is taken before the appropriate Schmidt decomposition may
generate a result different from equation (6). However, this is not the case; the following two
theorems show that |ψ3〉 also obeys equation (6) in the non-inertial frame.

Theorem 1. Let Alice and Bob initially share the arbitrary fermionic two-qubit pure state
|ψ2〉AB = ∑1

i, j=0 ai j|i j〉, whose concurrence is τ
(0)

2 . If one party accelerates with respect to
the other party, then the concurrence reduces to τ

(0)

2 cos r.

Proof. It is to be noted that the concurrence of |ψ2〉AB is

τ
(0)

2 = 2|a00a11 − a01a10|. (31)

First, we choose Bob as the accelerating party. Then, the Unruh transformation (3) and the
partial trace over II gives

ρAI =

⎛
⎜⎜⎝

|a00|2 cos2 r a00a∗
01 cos r a00a∗

10 cos2 r a00a∗
11 cos r

a∗
00a01 cos r |a01|2 + |a00|2 sin2 r a01a∗

10 cos r a01a∗
11 + a00a∗

10 sin2 r
a∗

00a10 cos2 r a∗
01a10 cos r |a10|2 cos2 r a10a∗

11 cos r
a∗

00a11 cos r a∗
01a11 + a∗

00a10 sin2 r a∗
10a11 cos r |a11|2 + |a10|2 sin2 r

⎞
⎟⎟⎠ . (32)

Using equation (32), we can construct R = ρAI (σy ⊗ σy)ρ
∗
AI(σy ⊗ σy). Although R is

a complicated matrix, it is possible to compute the eigenvalues analytically by solving
det(R − λI) = 0. The eigenvalues of R are {0, 0, 0, 4|a00a11 − a01a10|2 cos2 r}. Therefore,
by making use of the Wootters formula [12], we obtain the concurrence of ρAI as

τ2(ρAI ) = 2|a00a11 − a01a10| cos r = τ
(0)

2 cos r. (33)

Since τ
(0)

2 has a01 ↔ a10 symmetry, the choice of Alice as the accelerating party leads to the
same result, which completes the proof. �

Now, we state the main theorem of the paper.

Theorem 2. Let Alice, Bob and Charlie initially share the arbitrary fermionic three-qubit pure
state |ψ3〉ABC = ∑1

i, j,k=0 ai jk|i jk〉, whose three-tangle is τ
(0)

3 . If one party accelerates with

respect to other parties, then the three-tangle reduces to τ
(0)

3 cos2 r.

6
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Proof. It is to be noted that the three-tangle of |ψ3〉 [9] is

τ
(0)

3 = 4|d1 − 2d2 + 4d3|, (34)

where

d1 = a2
000a2

111 + a2
001a2

110 + a2
010a2

101 + a2
100a2

011,

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001

+ a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100. (35)

Since τ
(0)

3 is permutation-invariant, it is sufficient to provide the proof for the case that Alice
is chosen as the accelerating party. We provide the proof via two different methods. The first
proof is simple but intuitive, while the second is lengthy and direct. Thus, we present the
second one schematically. �

As shown in [9], the three-tangle is defined via the monogamy inequality C2
AB + C2

AC �
C2

A(BC), where C = τ2 is a concurrence. Therefore, the three-tangle of the mixed state can be
written as

τ3 = min
[
C2

A(BC) − C2
AB − C2

AC

]
, (36)

where the minimum is taken over all possible decompositions of the given mixed state.
Since Alice is chosen as the accelerating party, theorem 1 implies that each concurrence in
equation (36) has a degradation factor cos r. Therefore, equation (36) implies that the three-
tangle has a degradation factor cos2 r, which is what theorem 2 states.

Another method to prove theorem 2 is similar to the method for the proof of theorem 1.
After performing the Unruh transformation (3) on Alice’s qubit of |ψ3〉ABC and taking a
partial trace over II, one can derive ρIBC straightforwardly. Although ρIBC is an extremely
complicated 8 × 8 matrix, one can show from a purification protocol that its rank is
only 2. Therefore, it is possible to derive the spectral decomposition of ρIBC as a form
ρIBC = p|μ+〉〈μ+| + (1 − p)|μ−〉〈μ−|. Consequently, following a procedure similar to the
one we used previously, we can compute the three-tangle of ρIBC explicitly. We perform this
calculation by making use of the software Mathematica, and we finally arrive at equation (6)
again, which completes the proof.

In this paper, we investigated the degradation of the tripartite fermionic entanglement in a
non-inertial frame. If the given three parties initially share a pure state, the degradation factor
is shown to be simply cos2 r regardless of the initial state and choice of the accelerating party.
This is a surprising result in the sense of the simpleness of equation (6).

It is natural to ask whether or not the simpleness of equation (6) is maintained when the
initial state is a mixed state. Another natural question is to ask whether or not the simpleness
of equation (6) is maintained beyond the single-mode approximation. As commented earlier,
equation (1) generates the increase of the Hilbert space dimension for the accelerating party.
This gives difficulties for the computation of the three-tangle. So far, we do not know how to
define the three-tangle even in the qudit system. We believe that if the calculation tool for the
three-tangle in the higher dimensional Hilbert space is developed, equation (6) or other such
simple expressions are valid in these cases.

In order to escape the increase of the Hilbert space dimension, it is possible to consider the
particle or antiparticle sector in the full Hilbert space of the accelerating party in equation (1).
In this case, however, one has to trace over multiqubit states in the whole density matrices,
which generally makes the rank of the final state larger than 2. For example, if we consider

7
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Charlie’s particle sector of |ψ〉ABC given in equation (5), we have to trace over I−, II+ and II−

in the density matrices and the final state reduces to

ρABI+ = TrI−,II+,II−ρ

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ2
0C2 0 0 0 λ0λ1e−iϕC2 q∗

Rλ0λ2C λ0λ3C2 q∗
Rλ0λ4C

0 λ2
0S2 0 0 0 λ0λ1e−iϕS2 0 λ0λ3S2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

λ0λ1eiϕC2 0 0 0 T1C2 q∗
Rλ1λ2eiϕC T2C2 q∗

Rλ1λ4eiϕC
qRλ0λ2C λ0λ1eiϕS2 0 0 qRλ1λ2e−iϕC T3S2 + T4C2 qRλ2λ3C T5S2 + T6C2

λ0λ3C2 0 0 0 T ∗
2 C2 q∗

Rλ2λ3C T7C2 q∗
Rλ3λ4C

qRλ0λ4C λ0λ3S2 0 0 qRλ1λ4e−iϕC T ∗
5 S2 + T6C2 qRλ3λ4C T8S2 + T9C2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(37)

where C = cos r�, S = sin r�, T1 = λ2
1 + |qL|2λ2

2, T2 = λ1λ3eiϕ + |qL|2λ2λ4, T3 = λ2
1 + λ2

2,
T4 = |qR|2λ2

2, T5 = λ1λ3eiϕ + λ2λ4, T6 = |qR|2λ2λ4, T7 = λ2
3 + |qL|2λ2

4, T8 = λ2
3 + λ2

4 and
T9 = |qR|2λ2

4. It is easy to show that the rank of ρABI+ is 4 and, furthermore, the nonvanishing
eigenvalues cannot be obtained analytically. Since the analytical computation of three-tangle
for a higher rank mixed state is generally impossible except in very rare cases [7], it seems to
be impossible to compute the three-tangle for ρABI+ analytically. Similar situation occurs in
the antiparticle sector.

Another question that arises is the extension of equation (6) to the multipartite
entanglement. If an n-tangle is constructed in the future, we speculate that the degradation
factor in a non-inertial frame would be cosαn r, where αn = 2n−2. However, there are several
obstacles to confirming this hypothesis. Above all, the explicit expression of n-tangle is not yet
known. Furthermore, there is no calculational technique for the computation of the n-tangle
of n-qubit mixed states. Our future studies will further explore these issues.
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