국내 도로 및 개질아스팔트 현황

고도 포장의 연황 및 파곤 유영

□ 국내 도로의 현황

✓ 총 도로 연장 : 97,252 km

✓ 도로 포장율 : 77%로 약 75,000 km

✓ 콘크리트 포장: 16%로 약 12,000 km

✓ 아스팔트 포장: 84%로 약 63,000 km

□ 아스팔트 포장의 파손 유형

아스팔트 포장의 파손은 변형, 균열, 파괴에 의해 생기는데 이를 표면 파손, 접착 파손, 구조 파손으로 크게 분류된다.

유형	파손 형태	파손 원인	
표면 파손	라벨링	아스팔트 함량 부족, 노화, 수분	
	블록균열, 온도균열	노화, 온도변화	
접착 파손	주름균열	접착 부족, 포장두께 부족, 수평 하중	
구조 파손	피로균열	반복하중, 포장체 굴절	
	소성변형	아스팔트 품질, 습기 과다	

고도 포장의 파곤 영대

아그들는 등은 등급 표석

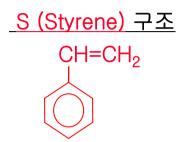
□ 아스팔트 등급

국내에서는 침입도 등급을 현재까지 사용하고 있으나, 이는 아스팔트 포장 후 성능을 파악할 수 없으므로, 미국 등에서는 성능과 관련이 있는 공용성 등급을 사용

	침입도 등급	점도 등급	공용성 등급
채택시기	1910 (美), 1960 (韓)	1960 (美)	1990 (美)
시험온도	25 ℃	60 ℃	-36 ~ 82 ℃
시험방법	천업도 (0.1mm) 100g 100g (개시) (5초후)		흥력 or 뱅형량 조정 회전단 아스필트
장점	시험방법 간단	고온에서 물성 파악	다양한 온도에서 물성 파악 도로환경을 반영한 등급
단점	물성 파악 불가능	저온 물성 파악 불가능 실제 도로환경 반영 불가능	시험장비 고가 시험방법 복잡

개열 아그럴드의 승규

- □ 개질 아스팔트의 필요성
 - ✓ 아스팔트의 조기 파손 억제 및 수명 연장
 - ✓ 공용성 등급으로 개정될 전망


□ 개질 아스팔트의 종류

개질 방식		특 징	개질재 종류
고분자	물리적 결 합	■ 점도 강화제(thickener) 역할 ■ 장기저장 불가능	합성고무, 열가소성수지, 폐타이어
개 질	분 자 결 합	■ 고분자 개질재와 아스팔트가 분 자 결합 (선진 특허 기술) ■ 성능 및 장기저장 안정성	SBS
화학적개질		□ 금속 촉매를 이용하여 아스팔트를 산화시켜 경도 증가□ 급속한 산화로 균열 발생	금속 촉매제
וכ	타	■ 섬유질, 천연재료 첨가로 아스팔 트 점성 증가	길소나이트 등

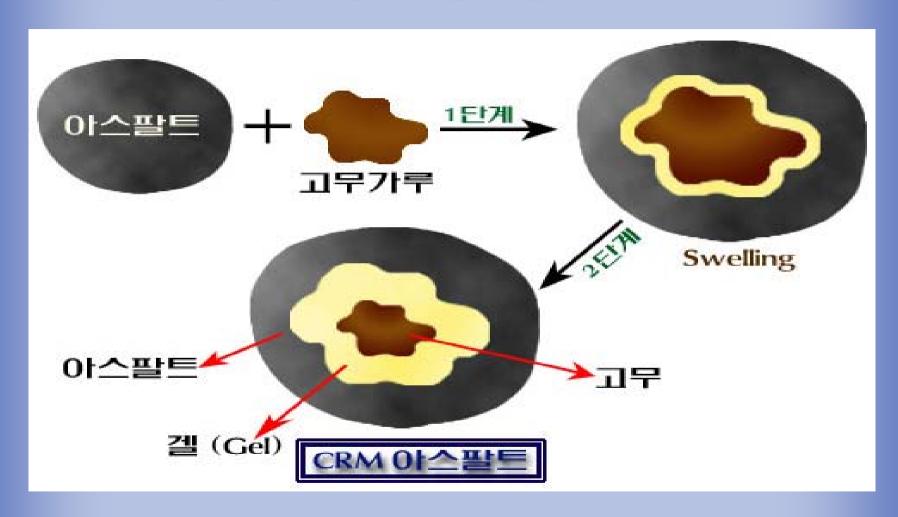
SN(デ) PIMA (元叫旨三)

■ 고분자(SBS)와 분자 결합한 개질 아스팔트

SBS: 스티렌과 부타디엔을 공중합시켜 제조한 블록공중합체 (Block Copolymer)

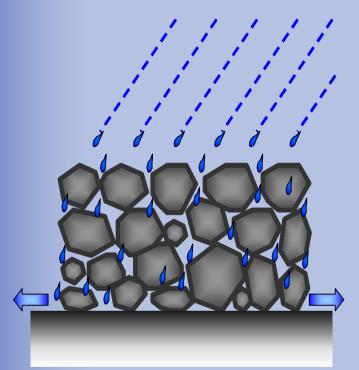
B (Butadiene) 구조 CH₂=CH-CH=CH2

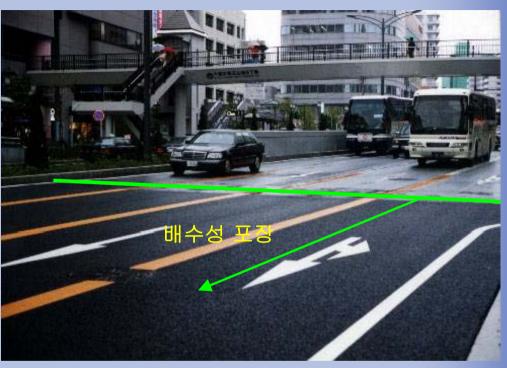
SBS (블록 공중합체): SSSSS -- BBBBBB -- SSSSS와 같은 구조의 열가소성 수지


SBR (랜덤 공중합체): --SSBSBSSSBSBBBSBSBSB--와 같은 구조의 열경화성 수지

* Polymer Modified Asphalt (고분자 개질 아스팔트)

뉴릭스타마 CRM


□ 폐타이어 고무분말과 물리적 결합한 개질 아스팔트



* Crumb Rubber Modifier (고무분말 개질재)

나인데그 5MA(메고달드)

□ 섬유질을 이용 골재간 결합시킨 배수성 아스팔트

* Stone Matrix Asphalt (골재 결합 아스팔트)

아스털트 콘크디트 포얼 및 나염 군서

