
Generalized Schmidt decomposition based on injective tensor norm

Levon Tamaryan,1 DaeKil Park,2 and Sayatnova Tamaryan3

1Physics Department, Yerevan State University, Yerevan, 375025, Armenia
2Department of Physics, Kyungnam University, Masan, 631-701, Korea

3Theory Department, Yerevan Physics Institute, Yerevan, 375036, Armenia

We present a generalized Schmidt decomposition for a pure system with any number of two-level subsystems.
For bipartite systems it gives the Schmidt decomposition, but differs from the well-known three-qubit GSD
(Acı́n et al, 2000). The basis is symmetric under the permutation of the parties and is derived from the product
state defining the injective tensor norm of the state. The largest coefficient quantifies the quantum correlation
of the state. Another coefficient provides a criterion for the presence of an unentangled particle in the state.
Remaining coefficients have an information on the applicability to the teleportation and superdense coding
when the given quantum state is used as a quantum channel.
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The Schmidt decomposition for bipartite systems [1] is a very important tool in quantum information and quantum computing
theories. It shows whether two given states are related by a local unitary transformation [2] or not, which states are applicable for
perfect teleportation [3] and superdense coding[4], and whether it is possible to transform a given bipartite pure state to another
pure state by local operations and classical communications [5]. Many substantial results have been obtained with the help of
the Schmidt normal form and its generalization to the multipartite states is a task of prime importance [6–8].

In this letter we suggest a new approach and impose the following requirements to the multipartite decomposition. First and
most important of all, the coefficients of the decomposition should be meaningful and reveal the physical nature of a system.
Second, the basis should be clearly defined and, in principle, a method for obtaining it should exist. Third, the decomposition
should contain a minimal set of state parameters. The idea of the first postulate reflects the fact that the main advantage of the
Schmidt decomposition comes from the physically meaningful set of coefficients.

Thus we are looking for a basis for a product states, which is naturally related to the state, such that the expansion of the
state function in this basis gives the physically relevant quantities. We would like to start from the product state that defines
the injective tensor norm of a given state. Next we form a uniquely defined set of basis states containing the nearest product
state as well as its complimentary orthogonal product states and express the state vector as a linear combination of vectors in the
set. The coefficients of the expansion, hereinafter referred to generalized Schmidt decomposition (GSD), exhibit the physically
significant properties of pure states. The largest coefficient g is the injective tensor norm of the state. It is a very useful quantity
and defines some entanglement measures [9–13]. The other coefficient, say h, has an information on the presence or absence
of an unentangled particle in a given quantum state. We will show in the following that h = 0 is a separability criterion for
pure states of a general multi-qubit system [14]. The remaining coefficients reveal the applicability of the quantum state to the
teleportation and superdense coding. We will show this by considering general two-qubit and three-qubit, and W-type n-qubit
systems whose injective tensor norms were already derived analytically. The decomposition describes two-qubit and GHZ-
type three-qubit systems in a similar manner. Furthermore all multi-qubit W-type states have the same description in the GSD
expansion.

GSD. Consider n-partite pure systems with the Hilbert space H = H1 ⊗H2 ⊗ · · · ⊗ Hn. The injective tensor norm g(ψ)
of a given n-partite pure state |ψ〉 is defined as g(ψ) = sup |〈χ1χ2 · · ·χn|ψ〉|, where the supremum is over all tuples of vectors
|χk〉 ∈ Hk with ‖χk‖ = 1 [15]. The nearest product state |q〉 = |q1 q2 · · · qn〉 must satisfy stationarity equations [12, 16]

〈q1q2 · · · q̂k · · · qn|ψ〉 = g|qk〉, k = 1, 2, · · ·n (1)

where the caret means exclusion. This is a nonlinear eigenvalue problem and, as is often the case, the solution is not single-valued
[17, 18]. Hereafter we consider only the solutions for which g is the maximal eigenvalue.

Consider now n-qubit system. For each single-qubit state |qk〉 there is, up to arbitrary phase, an unique single-qubit state
|pk〉 orthogonal to it. Each couple of vectors |qk〉 and |pk〉 is a basis in the Hilbert space Hk of kth qubit. From these single-
qubit states |qk〉 and |pk〉 one can form a set of 2n n-qubit product states which form a basis in the full Hilbert space H. Any
vector |ψ〉 ∈ H can be written as a linear combination of vectors in the set. Then from stationarity equations (1) it follows
that all the coefficients of the product states |q1 · · · qk−1pkqk+1 · · · qn〉(k = 1, 2, · · ·n) are zero. Thus any pure state can be
written in terms of 2n − n product states. Furthermore, the phases of vectors |pk〉 are free and we can choose them so that all
the coefficients tk of vectors |p1 · · · pk−1qkpk+1 · · · pn〉(k = 1, 2, · · ·n) be positive. Still we have a freedom to make a phase
shift |pk〉 → e2iπ/(n−1)|pk〉 which remains unchanged tk and g. We use this freedom to vary the phase ϕ of the component
eiϕh|p1p2 · · · pn〉 (h ≥ 0 is understood) within the interval −π/(n− 1) ≤ ϕ ≤ π/(n− 1).
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Thus the decomposition has n + 1 real and 2n − 2n − 1 complex parameters. After taking into account the normalization
condition, one can show that 2n+1 − 3n− 2 real numbers parameterize the sets of inequivalent pure states [19].

Theorem. The kth qubit is completely unentangled if and only if h(ψ) = 0 and ti(ψ) = 0 for i 6= k.
Proof. Suppose first qubit is completely unentangled and its state vector is |q1〉. We have |ψ〉 = |q1〉 ⊗ |ψ′〉. Let the product

state |q2q3 · · · qn〉 be the nearest state of |ψ′〉. Then GSD of |ψ′〉 takes the form

|ψ′〉 = g′|q2q3 · · · qn〉+
n∑

i=2

t′i|p2 · · · pi−1qipi+1 · · · pn〉+ · · ·+ eiϕ′h′|p2p3 · · · pn〉. (2)

Since the nearest state of the state |ψ〉 is, up to a phase, the product state |q1q2 · · · qn〉, then g(ψ) = g′, h(ψ) = 0, t1(ψ) = h′

and ti = 0, i = 2, 3...n. The inverse is also true. From h(ψ) = 0 and ti(ψ) = 0 for i 6= k it follows that all the terms in GSD
which do not contain |q1〉 vanish and |ψ〉 = |q1〉 ⊗ |ψ′〉. Similarly, theorem is true if any other qubit is unentangled.

Consider now n = 2, 3, 4 cases. For simplicity we will use notations |0i〉 and |1i〉 for vectors |qi〉 and |pi〉 respectively. Also
we will omit sub-indices i whenever it does not create misunderstanding. In the case of two qubit states the expansion reduces
to the Schmidt decomposition |ψ〉 = g|00〉+ h|11〉 with g ≥ h ≥ 0. Consider three-qubit case. Decomposition takes the form

|ψ〉 = g|000〉+ t1|011〉+ t2|101〉+ t3|110〉+ eiϕh|111〉. (3)

The coefficients should satisfy conditions

g ≥ max(t1, t2, t3, h), t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, h ≥ 0, −π

2
≤ ϕ ≤ π

2
. (4)

These conditions do not specify GSD uniquely. Eq.(3) is the GSD normal form of the state |ψ〉 if and only if g is the injective
norm. There are highly entangled states which can be written in a form of Eq.(3) in two different bases. One basis, where
the largest coefficient is injective tensor norm of the state, gives true GSD while the other, where the largest coefficient is not
injective tensor norm, does not. The example with W-type states, which is given below, illustrates this more clearly.

Consider four qubit case. The explicit expression of the expansion is

|ψ〉 = g|0000〉+
4∑
1

ti|0i111〉+
6∑
1

eiϕij tij |0i0j11〉+ eiϕh|1111〉. (5)

The restrictions on coefficients are: g ≥ max(ti, tij , h), ti ≥ 0, tij ≥ 0, h ≥ 0, π/3 ≤ ϕ ≤ π/3. Again these conditions
are insufficient to determine GSD uniquely. Necessary and sufficient condition is that the first coefficient is the injective tensor
norm of the state |ψ〉.

Consider now several interesting examples.
W-type states. Our first example that we shall discuss in detail is a family of four-parametric W-type states [20]

|ψ〉 = a|100〉+ b|010〉+ c|001〉+ d|111〉. (6)

If one relabels bases vectors |0i〉 ↔ |1i〉, i = 1, 2, 3, then one gets exactly the form given by Eq.(3), provided d is the largest
coefficient. But it gives GSD normal form only for the slightly entangled states. Otherwise Eq.(6) is not correct GSD.

Injective tensor norm of the state (6) was derived in Ref.[21]. It was shown that it is differently expressed in two different
ranges of definition. In highly entangled region parameters (a, b, c, d) form a cyclic quadrilateral and injective tensor norm is
expressed in terms of the the circumradius of the quadrangle. In slightly entangled region injective tensor norm is the largest
coefficient. Also there are states in between for which both formulae are valid. These states, called second type shared quantum
states, separate slightly and highly entangled states and can be ascribed to both types. Another specific states, called first type
shared quantum states, are those for which injective tensor norm is a constant and is defined by g2 = 1/2. These states allow
perfect quantum teleportation and superdense coding scenario [22].

Highly entangled region is defined by inequalities

ra = a(b2 + c2 + d2 − a2) + 2bcd > 0, rb = b(a2 + c2 + d2 − b2) + 2acd > 0, (7a)
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rc = c(a2 + b2 + d2 − c2) + 2abd > 0, rd = d(a2 + b2 + c2 − d2) + 2abc > 0. (7b)

The single-qubit states |qi〉 in this region are

|q1〉 =
√

rard|01〉+
√

rbrc|11〉
4S
√

ad + bc
, |q2〉 =

√
rbrd|02〉+

√
rarc|12〉

4S
√

ac + bd
, |q3〉 =

√
rcrd|03〉+

√
rarb|13〉

4S
√

ab + cd
, (8)

where S is the area of the cyclic quadrilateral (a, b, c, d).
The calculation of the coefficients requires advanced mathematical technique. One has to factorize polynomials of degree ten.

We would like to suggest a simple way. First one convinces oneself that each factor is a root for the polynomial and next finds
the proportionality coefficient in some particular case. The derivation of h is the most complicated out of all coefficients and one
can use the hint: if a = b + c + d, then rb = rc = rd = −ra. The resulting answer is

g =
L

2S
, t1 =

L|r1|
4S(ad + bc)

, t2 =
L|r2|

4S(bd + ac)
, t3 =

L|r3|
4S(cd + ab)

, ϕ =
π

2
, h =

√
rarbrcrd

4LS
, (9)

where

r1 = b2 + c2 − a2 − d2, r2 = a2 + c2 − b2 − d2, r3 = a2 + b2 − c2 − d2 (10)

and L =
√

(ab + cd)(ac + bd)(ad + bc). In fact, this set gives a fruitful description of the state. The invariant g is expressed
in terms of the circumradius of the cyclic quadrangle a, b, c, d and gives geometric and Groverian entanglement measures of the
state. First type shared states are defined by r1r2r3 = 0 and, therefore, one of coefficients ti must vanish for these states. On the
other hand if rk = 0, then g2 = 1/2 and the corresponding state allows teleportation(and dense coding) scenario. For perfect
teleportation the receiver should choose kth particle at initial stage in order to perform the task. Thus the coefficients ti contain
an information on the applicability to the teleportation and precisely indicate which particle the receiver should choose. Second
type shared states lie on the separating surface rarbrcrd = 0, i.e h = 0. We conclude that h > 0 for highly entangled states and
h = 0 for second type shared states.

To complete the analysis let us consider the remaining slightly entangled case, that is one of quantities ra, rb, rc and rd should
be negative. Consider for example rd < 0 and the remaining possibilities can be treated similarly. In this case the nearest state
is |111〉[21]. In order to obtain GSD one has to simply relabel bases. Then the final GSD coefficients are

g = d, h = 0, t1 = a, t2 = b, t3 = c. (11)

The obvious conclusion is that h 6= 0 only for the highly entangled states and identically vanishes for the slightly entangled
states. To get confidence let’s consider one-parametric n-qubit W-states

|ψ〉 = a (|100 · · · 0〉+ |0100 · · · 0〉+ · · ·+ |00 · · · 010〉) + b|00 · · · 01〉. (12)

Slightly entangled region is given by rn = (n − 1)a2 − b2 < 0 [23]. In this region the last product state |0 · · · 01〉 is the
nearest separable state and g = b, h = 0. In highly entangled region rn > 0 and, consequently, Sn = (n − 1)2a2 − b2 > 0.
The constituent states for the closest separable states are respectively

|q1〉 = · · · = |qn−1〉 =
a
√

(n− 1)(n− 2)|0〉+
√

rn|1〉√
Sn

, |qn〉 =

√
(n− 1)rn|0〉+ b

√
n− 2|1〉√

Sn

. (13)

Straightforward calculation gives

g = (1− b2)
n−1

2

[
n− 2
Sn

]n−2
2

, tn =
√

(n− 2)rn

[
rn

Sn

]n−2
2

, h = b
√

n− 1
[

rn

Sn

]n−2
2

, ϕ =
π

n− 1
. (14)

These expressions have the same meanings as in the three-qubit case. First, rn = 0 forces g2 = 1/2. Second, g2 > 1/2 and
h = 0 means the state is slightly entangled. Third, g2 < 1/2 and h = 0 means b = 0 and, therefore, the last qubit is unentangled.
Fourth, we conjecture that: all the states with rn = 0 allow the teleportation scenario and the receiver should choose nth qubit.
In summary, suggested GSD indicates the applicability to the teleportation and distinguishes the unentangled particles.
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GHZ-type states. Consider now the extended GHZ state [24]

|ψ〉 = a|000〉+ b|001〉+ c|110〉+ d|111〉 (15)

which can be rewritten as k|00q〉+ k′|11q′〉, where

k =
√

a2 + b2, k′ =
√

c2 + d2, |q〉 =
1
k

(a|0〉+ b|1〉) , |q′〉 =
1
k′

(c|0〉+ d|1〉) . (16)

Injective tensor norm of this state is[18] g = max(k, k′). It suffices to analyze only the case k ≥ k′ as the opposite case is
similar. The nearest state is |00q〉 and nonzero coefficients of the decomposition are

g = k, t3 =
ac + bd

k
, h =

|ad− bc|
k

. (17)

This set of GSD coefficients describes the extended GHZ-type states almost in the same way as bipartite systems. Since
g2 ≥ 1/2, there is no highly entangled region for GHZ-type states. In this sense W-state is more entangled than GHZ-state.
When the extended GHZ-state is most entangled, i.e. g2 = 1/2, it is applicable for both teleportation and dense coding [22] and
the situation is same in the case of bipartite systems. In contrast to W-type case, there is no region where h is identically zero.
Only on condition ad = bc the canonical coordinate h vanishes. Thus if h vanishes, then the state is biseparable and again the
same is true for two-qubit systems. The only difference from two-qubit case is that there is an extra term with the coefficient t3.
It shows that the third particle is unentangled when h = 0.

We have generalized the Schmidt decomposition for arbitrary composite systems consisting of two-level subsystems. We
have calculated the coefficients of the decomposition for generic two-qubit and three-qubit, and one-parametric n-qubit systems
explicitly. It is shown that they provide a profound information on the quantum states. The largest coefficient g gives two
entanglement measures and together with the last coefficient h clearly distinguishes the states entangled in inequivalent ways.
For W-type states there is entire region including a region where the last coefficient h is identically zero. There is no such region
for GHZ-type states. Furthermore, isolated zeros of the function h indicate the appearence of the unentangled particles. The
coefficients ti show whether or not a given state is applicable for perfect teleportation(and dense coding) and precisely indicate
which particle the receiver should choose at initial stage in order to perform the task. In summary, the explicit construction of
GSD for multi-particle systems will provide a deeper insight into the nature of multipartite entanglement.
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